
Lecture 13
Harvard architecture

Coccone OS demonstrator
Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018



Harvard version of CdM-8

• Harvard architecture = separate memory banks for data and instruction
• Can be implemented as:

• One-bit address extension selecting code and data access (cheap and simple)
• Separate memory channels (buses) – expensive but boosts performance
• Memory buses of different width 

(example: Microchip PIC has 8-bit data and 14-bit instruction memory)
• Separate cache channels and caches, probably backed by same main memory

actually used in some CPU

• In CdM-8, first approach (bit extension) is used
• One ISA-level change: ldc (LoaD Constant) instruction to read data from 

instruction memory



Coccone: most advanced version of CdM-8

• Extension of CdM-8 architecture and schematics intended to 
demonstrate basic concepts of protected-memory operating systems
• In second semester we offer team project: actually building OS for 

this machine
• But what we need to build an operating system?



Processes (tasks)

• Most (but not all) modern operating systems have concept of process
• Process is a virtual machine (or a sandbox) with limited access, that 

runs in isolated memory space
• Process virtual machine is NOT emulating full access to system 

hardware (unlike hypervisor virtual machines like VMWare or 
VirtualBox)
• All programs you write in C programming course and most other 

programs you use (including CocoIDE) are designed to be run as
processes and use operating system services to access hardware



What we need to protect memory

• Essentially, we need to catch every memory access for a running 
program
• Catch all memory accesses programmatically
• In fact, we need to interpret entire machine code of your program
• This is called byte-level interpretation
• This is how cocoemu actually works
• Orders of magnitude slower than hardware interpretation
• Can be significantly sped up by JiT compilation 
• JiT is what Java, C# and many hypervisor virtual machines actually do, 

but this is far beyond scope of our course



Catch all memory accesses in hardware

• Insert a hardware device (MMU for Memory Management Unit) 
between CPU and memory bank
• Coccone is using one of simplest known types of MMU, known as

memory banks
• Coccone uses 3 previously unused bits in PS register as bank selector
• In tome.pdf and in Logisim schemes it is also referenced as page 
• Bits 0-3 - CVZN flags, bit 7 - interrupt enable, bits 4-6 - selector
• So, we can use 8 memory banks 256 bytes each
• Actually, there are 10 banks, but more on this later 



Coccone memory subsystem



Memory banks are not equal

• Banks 0-3 are reserved for OS code 
(even simplest OS won’t fit in single bank)
• When bank 0-3 is active, CPU switches to Harvard mode 

and can use special 9th bank of RAM for data 
• When bank 4-7 is active, CPU switches to Manchester mode and uses 

the same bank for code and data
• Banks 4-7 are for [user] processes
• Bank 10 is for memory-mapped I/O
• This is controlled by VBR MMU register 

(byte 0xff of OS data/IO pages)



VBR (Virtual Bank Register)

• Not available in “user mode” (code banks 4-7)
• Can select one of 
• user mode banks, 
• OS data bank 
• I/O page 

for data access in “system mode” (code banks 0-3)



How to copy data from OS to user bank?

297 ldi r2,data.KBusr # memory bank 
298 ld r2,r2 # r2=memory bank 
299 
300 ldi r0,MMU #r0-> MMU I/O reg
301 st r0,r2 # set data memory bank 
302 
303 st r1,r3 # set data memory bank 
304 inc r1 # advance buffer pointer 
305 
306 clr r2 # MMU reset to page 0 
307 st r0,r2 #



But how to actually switch banks?

• When we write to bank selector, this is indirect jump (PC now points 
to different bank but to same position in the bank)
• One solution: place a same piece of code in every bank
• This code will handle bank switching 
• This approach is used in many 8-bit CPU with memory banks
• Actually, this is used in many OS for 32- and 64-bit CPUs.  A
• All OS for x86 are using this approach (OS kernel is mapped to same

addresses in all processes) 



And how actually change bits 4-6 of PS?

• We know only two instructions that load and store full PS register: 
ioi and rti
• We can use rti to put arbitrary value in PS (push it and then rti)
• But rti is also a control transfer

(considering a previous slide, this is good!)
• And you can use ioi to call procedures in other banks 

(just place right PS value at vector 0!)
• (Actually, many OSes use software interrupts for system calls)
• Also, special instruction osix with single operand (equivalent to ioi to 

vector 0, but bits 0-6 of new PS are taken from the operand)



But how interrupts work in multibank system?

• Where interrupt vectors are placed? 
• What happens to the stack?
• Coccone always takes interrupt vectors from bank 0
• But the vector contains a bank selector, so the handler can be placed 

in different bank!
• Coccone stack pointer is shadowed
• There are actually 8 stack pointers, one for every bank

==one per process
• But during interrupts, SP[0] is always used, so placing ISR in other 

banks require extra work



More on osix and rti

• osix can select target bank and set flags in PS
• Handler in the bank can use flags and conditional branches

to decode syscall number
• We can have 4x16=64 useful syscalls (pointing to OS code pages)
• And also 64 useless syscalls pointing to user code pages

• Useless syscalls actually disturb system operation, 
so coccone is not as protected as “real” protected memory systems

• rti can put arbitrary values to PS on return
• Syscalls can use flags to indicate failure or success
• Syscalls can pass parameters in registers
• We’ve seen how syscalls can copy data to user space, 

so we can pass pointers as parameters


